APAC, A DUAL ANTIPLATELET AND ANTICOAGULANT HEPARIN PROTEOGLYCAN MIMETIC, INTEGRATES WITH EXTRAVASCULAR MATRIX DURING VASCULAR INJURY

K. Barreiro, Msc; A. Jouppila, Msc; R. Tulamo, MD, PhD; A. Albäck MD, PhD; and R. Lassila, MD, PhD, Prof 1, 2

1 Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland; 2 Helsinki University Hospital Research Institute; 3 Vascular Surgery, University of Helsinki and Helsinki University Hospital; 4 Coagulation Disorders Unit, University of Helsinki and Departments of Hematology and Clinical Chemistry (HUSLAB Laboratory Services), Comprehensive Cancer Center, Helsinki University Hospital; 5 Aplagon Oy, Helsinki, Finland

Aims

- APAC's binding and localization to denuded iliac, carotid and femoral artery after local exposure in vitro and in vivo in a pig model.
- APAC co-localization with Von Willebrand factor (VWF), laminin, podocalyxin, and PECAM.

Methods

In vivo we locally, intraluminally applied biotinylated APAC (0.5 mg/mL) on vascular injury site, allowed 2 min exposure and released blood flow. In vitro APAC-Biotin was incubated with a scraped artery injury models.

- Mast cell heparin proteoglycans (HEP-PG) inhibit collagen-induced and Von Willebrand (VWF)-mediated platelet thrombosis, but preserve adhesion.
- APAC as a HEP-PG mimic contains conjugate of unfractionated heparins (UFH) with a core protein is designed to be used in association with vascular interventions.
- APAC shows dual antiplatelet and anticoagulant activity, inhibits arterial thrombosis.
- Mast cell heparin proteoglycans (HEP-PG) inhibit collagen-induced and Von Willebrand (VWF)-mediated platelet thrombosis, but preserve adhesion.
- APAC as a HEP-PG mimic contains conjugate of unfractionated heparins (UFH) with a core protein is designed to be used in association with vascular interventions.
- APAC shows dual antiplatelet and anticoagulant activity, inhibits arterial thrombosis (Folts and AV-shunt model in baboons) and reduces fibrin formation and protects from ischemic reperfusion injury in acute kidney injury model.

Results

1. APAC binds to *in vitro* denuded arteries

2. APAC binds to *in vivo* denuded arteries

3. APAC binds to *in vivo* arteriovenous fistula wall

4. APAC co-localizes *in vivo* with VWF in both balloon injury and AVF

5. APAC co-localizes *in vivo* with Laminin in both balloon injury and AVF

6. APAC shows limited co-localization with PECAM

7. APAC binding is reduced in presence of Podocalyxin

8. Manders' co-localization coefficients quantified the vascular co-localization of APAC

Conclusions

- APAC, developed as a local antithrombotic therapy to be used in association with vascular intervention shows multiple binding sites on vascular injuries.
- APAC adheres to vascular injury site of arteries and AVF and co-localizes with VWF and Laminin.
- APAC binding and colocalization are strongly reduced in presence of PECAM or Podocalyxin.
- APAC, a dual antiplatelet and anticoagulant, binds to site of vascular damage and offers local antithrombotic action.

Abbreviations

* Lumen; Arrowheads: Internal elastic lamina; FV: femoral vein; An: anastomosis; FA: femoral artery; scale bar: 20 µm

Acknowledgments

Balloon denudation

Arterio-venous fistula wall

VWF

APAC

Laminin

PECAM

Merga

Hoechst

APAC

Merga

Hoechst