

Dose escalation effects of intravenous APAC, a heparin proteoglycan mimic, in healthy participants

Y Mehta¹, R Saxena¹, S Goel¹, J George¹, A Amarsheda¹, A Kumar², A Chatterjee², S Patel², S Sharma², A Jouppila^{3,4}, M Koskinen^{5,6} N Meyers⁷, and R Lassila^{4,6,8} Medanta, Delhi, India, ²Cadila, Ahmedabad, India, ³Clinical Research Institute HUH, ⁴Research Program Unit in Systems Oncology, Medical Faculty, Helsinki Univ, ⁵Helsinki Univ, ⁶Diagnostic Centre of HUH, ⁷Boyds, Crewe UK, ⁸Aplagon Ltd, Helsinki, Finland

INTRODUCTION

AntiPlatelet, AntiCoagulant APAC, mimics natural antithrombotic mast-cell heparin proteoglycans being a conjugate of unfractionated heparin (UFH) and human serum albumin (HSA)

APAC targets vascular injury sites, acts as local antithrombotic especially under arterial flow conditions and inhibits inflammation and complement system

In essence, APAC is a dual von Willebrand factor (VWF) and thrombin inhibitor

AIMS

- To report results of Phase-I clinical study of single, ascending IV bolus injections of APAC in healthy participants
- To assess safety and dose responses on platelet aggregation and coagulation activity

HEALTHY PARTICIPANTS

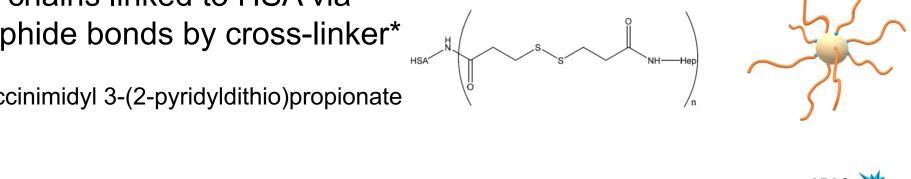
30 healthy males (10/cohort) were IV-dosed APAC 0.1, 0.25 and 0.5 mg/kg and followed clinically for 24 h to 5 days, with laboratory assessment up to 12h

CONCLUSIONS

- Clinical safety study of IV doses of APAC was successful without adverse events
- The half-life of relevant clinical doses are about 90 min
- Clinical laboratory follow up was feasible with several routine markers of which TT, ACT and ROTEM InTEM CT and MCF are suitable and the most sensitive
- The antithrombotic effects of APAC were dose-dependent and transient, aligning with our ongoing studies for vascular interventions and thrombo-inflammation

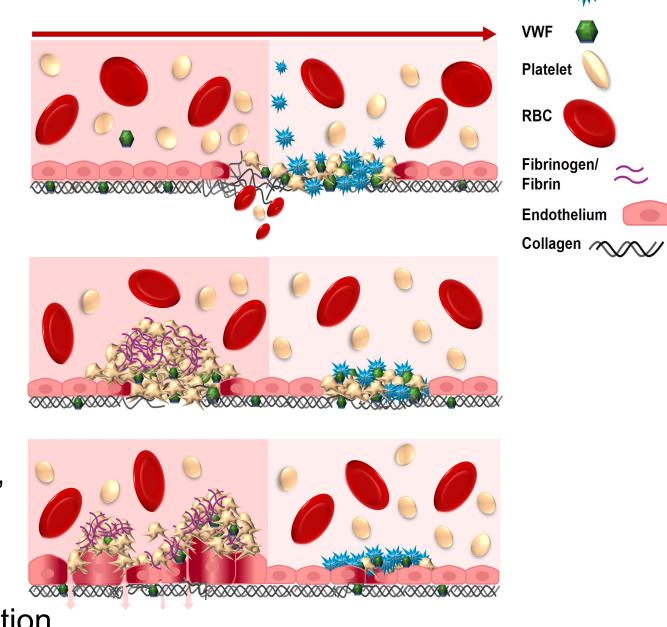
METHODS

Study identifier: CTRI/2023/04/051500

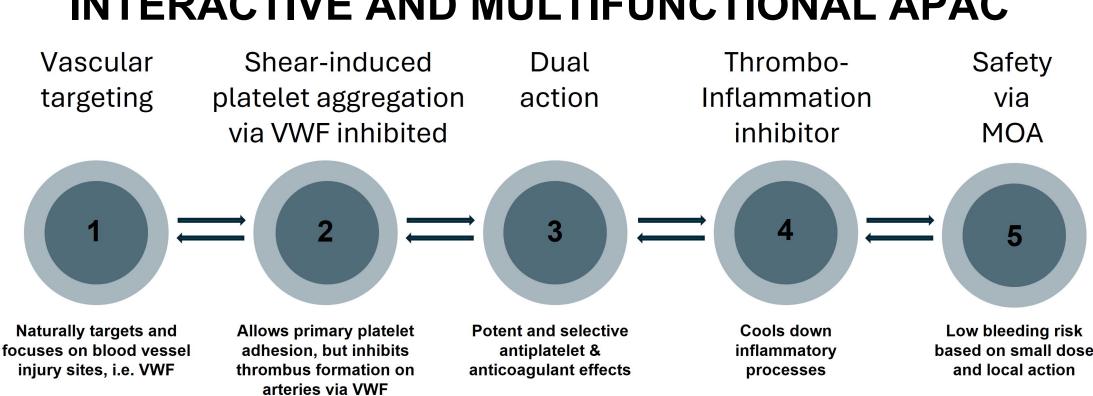

- Complete blood cell counts,
- Routine clinical chemistry
- Coagulation analysis:
- activated partial thromboplastin time (APTT) prothrombin time (PT)
- thrombin time (TT)
- activated clotting time (ACT)
- antiFIIa/antiFXa activities (Biophen assay, antithrombin supplemented)
- ROTEM, InTEM
- VerifyNow
- Platelet aggregation by collagen (2 µg/mL), ristocetin, arachidonic acid (AA), adrenaline and adenosine-5 diphosphate (ADP)

MECHANISM OF ACTION OF APAC

STRUCTURE OF APAC


UFH chains linked to HSA via disulphide bonds by cross-linker*

*N-succinimidyl 3-(2-pyridyldithio)propionate


APAC targets injury sites under high blood flow conditions allowing primary platelet adhesion and hemostasis

APAC inhibits platelet aggregation under high blood shear rate mediated via collagen, VWF and thrombin and Is a potent anticoagulant, especially against thrombin, dependent on heparin

APAC cools down inflammation

INTERACTIVE AND MULTIFUNCTIONAL APAC

CONTACT

Riitta Lassila riitta.lassila@kolumbus.fi

www.aplagon.com

RESULTS

- No adverse events, dose limiting toxicities or safety concerns were observed in clinical or laboratory data
- PT did not change, but ACT (Fig. 1), APTT and TT (Fig. 2) dose-dependently and transiently aligned with dose-escalated anticoagulant effects
- ACT and TT were the most sensitive markers of APAC doses (Fig.1, 2)
- Accordingly, the antiFIIa/antiFXa activity ratio varied between 2.5 to 3.1 at the same time
- ROTEM InTEM clotting time and clot firmness time were transiently prolonged at ≥ 0.25 mg/kg of APAC, and maximum clot firmness (MCF) was reduced by 12-57% at 0.5 mg/kg
- Platelet aggregation inhibition (15-25%) with many of the agonists was short-lived (15-30 min) occurring only at the highest APAC dose
- APAC did not induce responses in VerifyNow to either AA or ADP

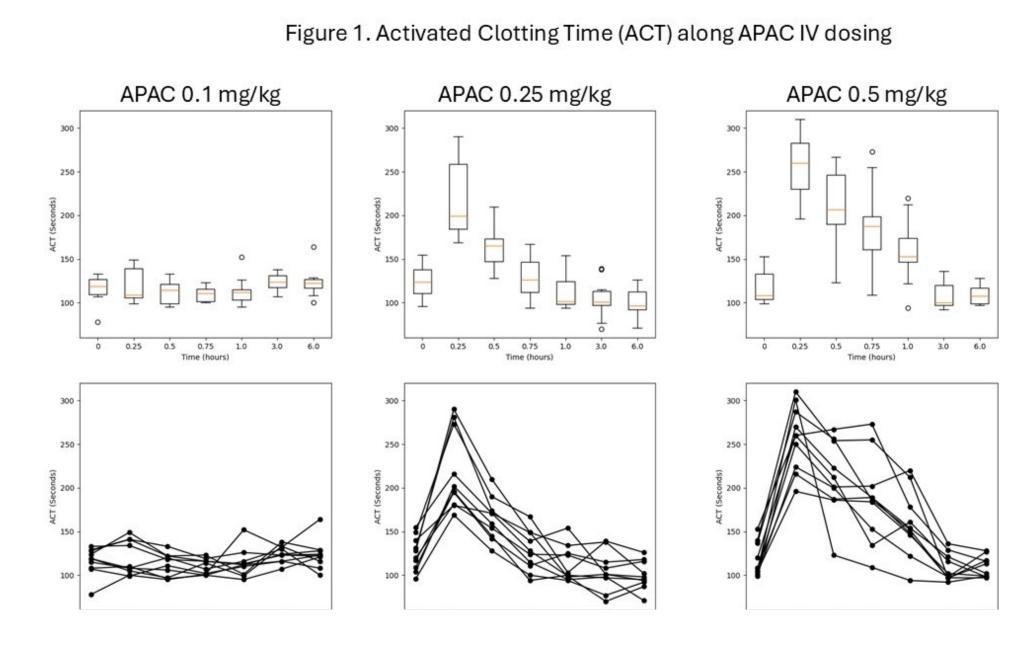
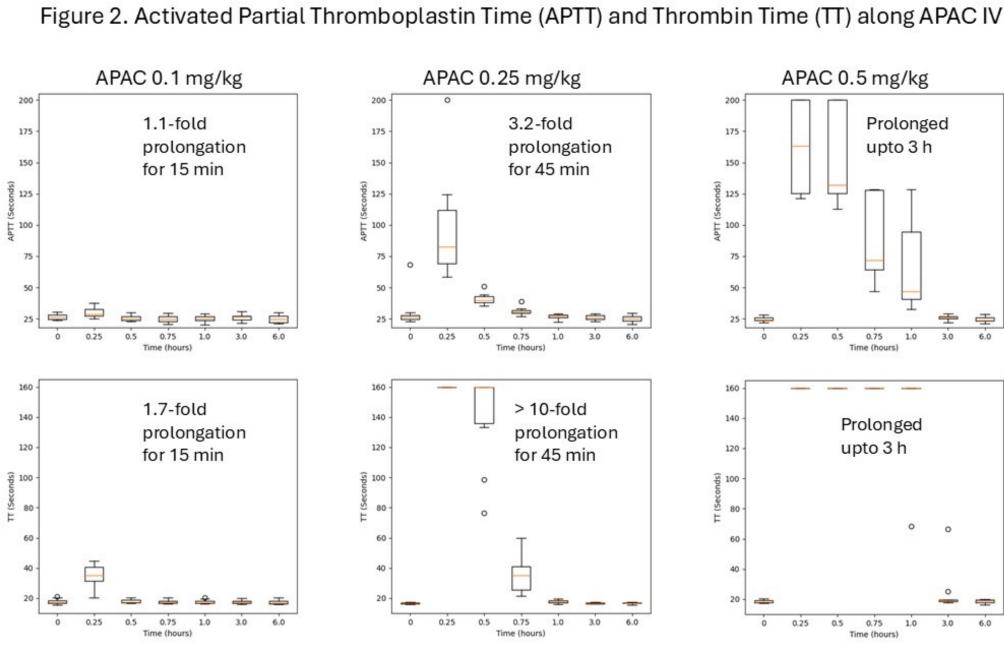



Figure 2. Activated Partial Thromboplastin Time (APTT) and Thrombin Time (TT) along APAC IV dosing

Lassila R, Jouppila A. Mast cell-derived heparin proteoglycans as a model for a local antithrombotic. Semin Thromb Chem. 2022, 414:1029 Hemost. 2014. 40:837 Bonetti N et al. Intravenously administered APAC, a dual AntiPlatelet AntiCoagulant, targets arterial injury site to

Tuuminen R et al. Dual antiplatelet and anticoagulant APAC prevents experimental ischemia-reperfusion-induced acute kidney injury. Clin Exp Nephrol. 2017, 21:436

Chen J et al. Dual antiplatelet and anticoagulant (APAC) heparin proteoglycan mimetic with shear-dependent effects on platelet-collagen binding and thrombin generation. Thromb Res. 2018, 169:143

References

Anticoagulant. J Cardiovasc Pharmacol. 2021, 78:453

Barreiro K et al. Novel Locally Acting Dual Antiplatelet and Anticoagulant (APAC) Targets Multiple Sites of Vascular Injury in an Experimental Porcine Model. Eur J Vasc Endovasc Surg. 2019, 58:903 Craige S et al. Safety and Functional Pharmacokinetic Profile of APAC, a Novel Intravascular Antiplatelet and

Winzely M et al. AFM investigation of APAC (antiplatelet and anticoagulant heparin proteoglycan). Anal Bioanal

inhibit platelet thrombus formation and tissue factor activity in mice. Thromb Res. 2023, 228:163 Bot I et al. Treatment with APAC, a dual antiplatelet anticoagulant heparin proteoglycan mimetic, limits early collarinduced carotid atherosclerotic plaque development in Apoe-/- mice. Atherosclerosis. 2024, 397:118567 Denorme F et al. Pretreatment with a dual antiplatelet and anticoagulant (APAC) reduces ischemia-reperfusion injury in a mouse model of temporary middle cerebral artery occlusion-implications for neurovascular procedures. Acta Neurochir. 2024, 15;166:137

Jouppila A et al. Antiplatelet-anticoagulant, APAC, a mimic of endogenous heparin, is an antithrombotic with von Willebrand factor-mediated characteristics. Thromb Res. 2025, 12;250:109318